

Viewing Pipeline: Window-Viewport Transf. TU

- clipping window: what to display
- viewport: where to be viewed
- translation, rotation, scaling, clipping,...

Window - Viewport Transform (1)

point ($x w, y w$) in a designated window is mapped to viewport coordinates (xv,yv) so that relative positions in the two areas are the same.

Window - Viewport Transform (3)

2-dim. Viewing-Transformation Pipeline

Clipping Operations

 70- remove objects outside a clip window
- clip window: rectangle, polygon, curved boundaries
- applied in world or viewing coordinates
- combined with scan conversion
- objects to clip: points, lines, polygons, curves, text, ...

3 Possibilities for Clipping 70

- analytically = in world coordinates
- reduces WC \rightarrow DC transformations
- during raster conversation
= as part of the rasterization algorithm
- efficient for complex primitives
- pixel by pixel test
- biggest effort, very primitive algorithm

Werner Purgathotericorn
13

Line Clipping (2)

- goals
- eliminate simple cases fast
- avoid intersection calculations

$$
\begin{array}{|l}
\text { for endpoints }\left(x_{0}, y_{0}\right),\left(x_{\text {end }}, y_{\text {end }}\right) \\
\text { intersect parametric representation } \\
x=x_{0}+u \cdot\left(x_{\text {end }}-x_{0}\right) \\
y=y_{0}+u \cdot\left(y_{\text {end }}-y_{0}\right)
\end{array}
$$

with window borders:
intersection $\Leftrightarrow 0<u<1$

Werner Purgathofer / Computergraphik 15

- all others \Rightarrow intersect!

Cohen-Sutherland Line Clipping

■ "or" of codes of both
points $=0000 \Rightarrow$ line entirely visible

- "and" of codes of both points $\neq 0000 \Rightarrow$ line entirely invisible
正
binary region codes assigned to line endpoints according to relative position with respect to the clipping rectangle

Cohen-Sutherland Line Clipping

assignment of region codes to line endpoints

Sutherland-Hodgman Polygon Clipping IT

- processing polygon boundary as a whole against each window edge

original polygon

clip left clip right

clip bottom
clipping a polygon against successive window boundaries
- intersection test with bounding lines of clipping window
- left, right, bottom, top
- discard an outside part
- repeat intersection test up to four times
vertical: $y=y_{0}+m\left(x w_{\min }-x_{0}\right), y=y_{0}+m\left(x_{\text {max }}-x_{0}\right)$
horiz.: $x=x_{0}+\left(\mathrm{yw}_{\text {min }}-y_{0}\right) / m, x=x_{0}+\left(\mathrm{yw}_{\text {max }}-y_{0}\right) / m$
Werner Purgathofer / Computergraphik
19

Sutherland-Hodgman Polygon Clipping

- four possible edge cases

out \rightarrow in \quad in \rightarrow in output: $\mathrm{V}^{\prime}{ }_{1}, \mathrm{~V}_{2} \quad \mathrm{~V}_{2}$

$$
\text { in } \rightarrow \text { out }
$$

$$
\text { out } \rightarrow \text { out }
$$

successive processing of pairs of polygon vertices against the left window boundary

Polygon Clip: Combination of 4 Passes

- the polygon is clipped against each of the 4 borders separately, that would produce 3 intermediate results.
by calling the 4 tests recursively,
(or by using a clipping pipeline) every result point is immediately processed on, so that only one result list is produced

Sutherland-Hodgman Clipping Example

- pipeline of boundary clippers to avoid intermediate vertex lists

[Processing the polygon vertices through a boundary-clipping pipeline. After all vertices are processed through the pipeline, the vertex list for the clipped polygon is $\left\{1^{\prime}, 2,2^{\prime}, 2^{\prime \prime}\right\}$]
Werner Purgathofer / Computergraphik 1

Sutherland-Hodgman Polygon Clipping

- extraneous lines for concave polygons:
- split into separate parts or
- final check of output vertex list

[clipping the concave polygon with the SutherlandHodgeman clipper produces two connected areas]

1. text clipping using a bounding rectangle about the entire string

Text Clipping (3)

3. text clipping performed on the components of individual characters

```
    Summary: Clipping
- Cohen-Sutherland line clipping
- Hodgman-Sutherland polygon clipping
| text clipping
- Cohen-Sutherland line clipping
- Hodgman-Sutherland polygon clipping
- text clipping
```

